
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41078 360

Web Intrusion Using Advanced SQL Injector and

Countermeasures

Mrs. R. Raghavi Tharani
1
, S. Jayasurya

2
, A. Azath

3

Assistant Professor, Dept. of BCA&SS, Sri Krishna Arts and Science College, Coimbatore, India
1

P.G. Student, Dept. of BCA&SS, Sri Krishna Arts and Science College, Coimbatore, India
2, 3

Abstract: The topic web intrusion using advanced SQL injector and counter measures, SQL injection has become a

predominant type of attack that target web applications. It allows attackers to obtain unauthorized access to the back-

end database to alter the intended application-generated SQL queries. Researchers have proposed various solutions to

address SQL injection problems. Our dependence on the web applications for the fulfillment of our daily needs (like

share trading, banking, ticket booking, online shopping, payment of bills etc.) has increased. Because of this, our

private data is present in the databases of various applications on Web. The defense of this myriad amount of data is a

theme of major anxiety. In current times, SQL Injection attacks have emerged as a major risk to database security. In

this paper we characterize SQL Injections, illustrate how SQL Injections will perform. In addition we have also

surveyed the various SQL Injection recognition and anticipation tools and well-known assail methods.

Keywords: Introduction, Injection Mechanism, tools.

1. INTRODUCTION:

SQL injection is one of the main technique attackers use to

negotiate a database. This type of attack use vulnerabilities

accessible in web applications or stored procedures in the

back-end database server. It allow attackers to inject

crafted cruel SQL query segment to change the planned

effect of a SQL query, so that attackers can obtain illegal

access to a database, read or modify data, make the data

occupied to other users, or even damage the database

server. According to a review report released in 2010 by

the IBM X-Force® RD team, the number of SQL injection

attacks has enlarged rapidly in recent years, and SQL

injection has become the major type of attacks that target

web applications. During the initial half of the year of

2010, the average sum of daily SQL injection attacks

around the world is about 400,000.Web applications and

their essential databases require not only cautious

configuration and programming to guarantee security, but

also effective protection mechanisms to avoid attacks.

Researchers have planned various solution and techniques

to address the SQL injection problems. On the other hand,

there is no one solution that can guarantee complete

security. Many current solutions often cannot address all

of the harms. For example, many techniques anticipated

are based on the postulation that only the SQL statements

that receive user input are at risk to SQL injection attacks.

SQL (Structured Query Language) is a general language

worn to insert, update, retrieve and delete information

from the databases. When we penetrate our information

(like login identification etc.) in the input field provided

on the web form of a Web Application, it form the part of

the SQL query wrote at the backend, to be perform on the

database. For instance, when we login into our mailbox,

we present user id and password. The user id and

password makes the part of the interior SQL query. Then

the SQL query is executed on the database to test whether

the login credentials presented match with those there in

the tables on the database. The attacker, who is not aware

of the login identification but, wants to gain admission to

the mailbox by unmerited means, provides SQL code in its

place of correct input in the test fields of the web form.

This cruel code changes the structure of the original SQL

query and as a result, allows the attacker to achieve access

to the information it was not certified for.

Fig1. Sql Injection Architecture

2. INJECTION MECHANISMS

Cruel SQL statements can be introduced into a defenseless

application using many diverse input mechanisms. In this

section, we clarify the most common mechanisms.

Injection through the user input: In this type of injection,

attackers inject SQL commands by providing properly

crafted user input. A Web application can interpret user

input in numerous ways on the basis of environment in

which the application is organized. In most SQLIAs that

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41078 361

intention Web applications, user input classically comes

from form compliance that are propelled to the Web

application via POST requests or HTTP GET. Web

applications are generally able to contact the user input

contained in these needs as they would contact any other

variable in the atmosphere. Injection through cookies:

Cookies are files that contain state information produced

by Web applications and piled up on the client machine.

When a client returned to a Web application, cookies are

used to renovate the client’s state information. Since the

client has power over the storage of the cookie, a cruel

client could tamper with the cookie’s contents. If Web

applications make use of the cookie’s contents to construct

SQL queries, an attacker could easily submit an attack by

embedding it in the cookie.

Injection through server variable: Server variables are a

collection of variables that hold environmental variables,

network headers and HTTP. Web applications use these

server variables in many ways, such as logging practice

statistics and identifying browsing trend. If these variables

are logged to a database without purification, this could

generate SQL injection susceptibility. Because attackers

can counterfeit the values that are positioned in HTTP and

network headers, they can exploit this susceptibility by

placing an SQLIA straight into the headers. When the

query to log the server variable is mattered to the database,

the attack in the forged header is then activated.

Second-order injection: In this injections, attackers start

cruel inputs into a system or database to ultimately

activate an SQLIA when that input is worn at a later time.

The purpose of this kind of attack differs significantly

from a regular injection attack. Second-order injections are

not annoying to cause harass to occur when the cruel input

initially reaches the database. Instead, attackers depend on

knowledge of where the input will be subsequently used

and skill their attack so that it occur at some stage in that

practice. To clarify, we present a classic example of a next

order injection attack (taken from). In the example, a user

registers on a website using a sowed user name, such as

“admin’ --”. The application correctly escapes the solo

quote in the input before accumulate it in the database,

preventing its potentially cruel effect. At this point, the

user alters his or her password, a process that naturally

involves (1) examining that the user knows the recent

password and altering the password if the check is

triumphant. To do this, the Web application might build an

SQL command as follow:

queryString="UPDATE users SET password=‟" +

newPassword +

"‟ WHERE userName=‟" + userName + "‟ AND

password=‟" +

oldPassword + "‟"newPassword and oldPassword are

the new and old passwords, respectively, and

userName is the name of the user currently logged-in

(i.e., „„admin‟--‟‟).[1]

Therefore, the query string that is sent to the database is

 (assume that newPassword and oldPas-sword are

“newpwd” and“oldpwd”):

UPDATE users SET password=‟newpwd‟

WHERE userName= ‟admin‟--‟ AND

password=‟oldpwd‟[2]

Because “--” is the SQL commentary operator, everything

after it is unnoticed by the database. Therefore, the effect

of this query is that the database will change the password

of the admin (“administrator”) to an attacker-specified

value. Second-order injections can be especially hard to

detect and prevent because the position of injection is

different from the position where the attack really apparent

itself. A developer may correctly escape, type-check, and

strain input that comes from the client and assume it is

secure. Later on, when that data is used in a dissimilar

context, or to build a diverse type of query.

CANDID It is a instrument developed to

safeguard Web applications in

Java language next to SQL

Injection attacks. It uses

candidate inputs to dynamically

assume about the programmer

intended query structure. Candid

consists of two apparatus: an

online SQL parse tree checker

and an offline Java program

transformer.

AMNESIA Detection and anticipation

technique, which uses fixed and

dynamic study in combination.

During static analysis, it predicts

the legitimate queries that can be

generated by the application.

During dynamic analysis, it uses

runtime examine to check the

queries generated in static

analysis against the actual set of

produced query.

Positive

Tainting

Dynamic method to detect and

prevent SQL injections by

performing dynamic spoil

Firstly, it finds and highlight the

belief data. Then it executes

accurate spoil propagation by

highlighting the belief data at

character level. Finally, it

execute syntax-aware

SQL Rand The concept of Instruction-Set

randomization is practical to the

SQL language to notice and

abort query which hold injected

code. Here, each SQL keyword

is joined with a random digit to

mislead the invader.

SQL DOM Object oriented model in which

SQL queries are generated by

influencing objects which are

strongly-typed to the database. It

inspects the dynamically

produced query at of compile

time.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41078 362

Viper An instrument used for Web

Application penetration testing

which uses heuristic advance for

detecting SQL Injections.

SQL-Prob SQL Proxy-based Blocker which

fetches the user input from the

SQL query of the application

and checks it against the

syntactic structure of the query.

ADMIRE It is a danger risk replica which

give a thorough and step-by-step

method to identify and sensible

the effect of SQL Injections.

WAVES A Black box technique which

searches for vulnerable locations

in a Web application using a

Web flatterer and then constructs

attacks which target these

locations. Finally, it watches the

response of the Web application

to these assails using machine

learning technique.

JDBC-Checker It is a static checking technique

which tests for the rightness of

the dynamically-generated SQL

query

Table 1: SQL Tools

Fig 1: Architecture of SQL Injection and Problems

3. PREVENTION OF SQL I

Researchers have planned a wide range of technique to

address the difficulty of SQL injection. These techniques

sort from development best practices to completely

automated frameworks for spotting and averting SQLIAs.

In this section, we review these proposed techniques and

summarize the merits and demerits linked with each

method.

4. DETECTION AND PREVENTION TECHNIQUES

Researchers have planned a range of method to assist

developers and pay off for the inadequacy in the

application of suspicious coding.

Black Box Testing. Huang and classmates propose

WAVES, a black-box method for testing Web applications

for SQL injection vulnerabilities. The method uses a Web

crawler to recognize all points in a Web application that

can be worn to inject SQLIAs. It then constructs attacks

that aim such points based on a specified list of pattern and

attack techniques. WAVES then check the application's

response to the attacks and uses machine learning

techniques to improve its assail method. This technique

improves over most penetration testing techniques by

using machine learning approach to direct its testing.

However, similar to all black-box and penetration testing

techniques, it cannot provide guarantees of completeness.

Static Code Checker. JDBC-Checker is a method for

statically checking the type rightness of dynamically-

generated SQL queries. This method was not developed

with the intent of detecting and preventing general

SQLIAs, but can yet be used to avert attacks that take

advantage of type mismatches in a dynamically-produced

query string. JDBC-Checker is capable to detect one of the

root cause of SQLIA vulnerabilities in code— rude type

checking of input. On the other hand, this method would

not catch more common forms of SQLIAs because most of

this attack consist of syntactically and type correct query.

Wassermann and Su suggest a method that uses static

analysis joined with automated reasoning to validate that

the SQL query produced in the application layer cannot

hold a tautology. The main drawback of this method is that

its scope is restricted to detecting and preventing

tautologies and cannot notice other types of attack.

Combined Static and Dynamic study. AMNESIA is a

model-based method that combines both runtime

monitoring and static analysis. In its static segment,

AMNESIA uses static analysis to build model of the

different types of query an application can lawfully

produce at each point of contact to the database. In its

dynamic segment, AMNESIA intercepts all query before

they are sent to the database and check each query against

the statically-built model. Query that infringes the model

are identified as SQLIAs and banned from executing on

the database. In their evaluation, the authors have exposed

that this method perform well against SQLIAs. The

primary limitation of this technique is that its success is

dependent on the correctness of its static analysis for

constructing query models. Certain types of code

obfuscation or query development technique could create

this step less exact and result in both false positives and

false negatives.

Similarly, two recent related approaches, SQL Guard and

SQL-Check also check query at runtime to see if they

conform to a model of predictable queries. In these

approaches, the model is expressed as a grammar that only

admits legal queries. In SQL Guard, the model is deduced

at runtime by examining the structure of the query before

and after the addition of user-input. In SQL Check, the

model is specified independently by the developer. Both

approaches use a secret key to delimit user input at some

point in parsing by the runtime checker, so safety of the

approach is dependent on attackers not being able to find

out the key. Additionally, the use of these two approaches

requires the developer to either rewrite code to use unique

intermediate records or physically insert special markers

into the code where user input is added to a dynamically

generated query.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41078 363

Several dynamic spoil analysis approaches have been

projected. Two alike approaches by Pietraszek and Berghe

and Nguyen-Tuong and colleagues modify a PHP

interpreter to follow exact per-character spoil information.

The technique uses a context sensitive analysis to notice

and refuse queries if untrusted input has been used to

create certain types of SQL tokens. A ordinary draw-back

of these two loom is that they need modification to the

runtime environment, which affects portability. A method

by Haldar and colleagues and SecuriFly execute a alike

approach for Java. However, these techniques do not use

the context sensitive analysis engaged by the other two

approaches and track spoil information on a per-string

foundation. SecuriFly also attempt to sterilize query

strings that have been generating using tainted input.

However, this purification approach does not help if

injection is performing into numeric fields. In common,

dynamic taint-based technique have shown a lot

5. TECHNIQUES EVALUATION

In this, we estimate the techniques offered in Section 5

using several different criteria. We first consider which hit

types each method is able to address. For the subset of

techniques that are based on code improvement, we look

at which suspicious coding practice the technique helps

enforce. We then identify which injection mechanism each

technique is able to handle. Finally, we evaluate the

deployment requirements of each technique.

6. EVALUATION WITH RESPECT TO ATTACK

TYPES

Intrusion Detection System. Valeur and his colleagues

advise the use of an Intrusion Detection System (IDS) to

sense SQLIAs. Their IDS format is based on a machine

learning method that is trained by means of a set of typical

application query. The technique constructs models of the

typical query and then monitors the application at runtime

to identify query that do not match the model. In their

evaluation, Valeur and his colleagues have shown that

their system is able to detect attack with a high rate of

achievement. Though, the fundamental limitation of

learning based techniques is that they can give no

guarantees about their discovery abilities because their

success is reliant on the quality of the training set used. A

reduced training set would cause the learning method to

produce a large number of fake positives and negatives.

Proxy Filters. Security Gateway is a proxy filter system

that enforces input legalization rules on the data flowing to

a Web application. Using their safety Policy Descriptor

Language (SPDL), developer give constraint and

recognize transformations to be practical to application

parameter as they flow from the Web page to the

application server. Because SPDL is highly significant, it

allows developer substantial freedom in expressing their

policy. However, this loom is human-based and, like

suspicious programming, requires developers to know not

only which data wants to be filtered, but also what pattern

and filter to pertain to the data.

Instruction Set Randomization. SQLrand is an loom based

on instruction-set randomization. SQLrand provide a

framework that allows developers to make queries using

randomized instructions in its place of normal SQL

keywords. A proxy filter intercept query to the database

and de-randomizes the keyword. SQL code injected by an

attacker would not build using the randomized instruction

set. So, injected commands would effect in a syntactically

wrong query. While this technique can be very effectual, it

has several practical drawbacks. First, since it uses a secret

key to modify orders, security of the approach is reliant on

attackers not being able to discover the key. Second, the

approaches impose important infrastructure overhead

because it require the integration of a proxy for the

database in the system.

7. CONCLUSION

SQL injection attack is a serious danger to the growing

fame of these applications. The major target of this attack

is the database of the Web application and attacker have

plan various technique for the same. We have reviewed all

the common attack methods and have offered simple

illustration for each of them. Also, we have formulate a

new solution to counter the difficulty of SQL Injection

Attacks but, it is not fool evidence against every well-

known attack method. In upcoming we would like to

improve our solution so that it can counter all types of

attacks.

REFERENCES

[1] IBM Internet Security Systems X-Force® research and

development team, “IBM Internet Security Systems™ X-Force®

2009 Mid-Year Trend and Risk Report,” Aug. 2009. [Online].
Available: www-935.ibm.com/services/us/iss/xforce/trendreports/.

[Accessed: Apr. 10, 2010].

[2] V. Chapela, “Advanced SQL Injection,” OWASP Foundation, Apr.
2005. [Online]. Available:

www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt.

[Accessed: Mar. 2, 2010].
[3] W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-

Injection Attacks and Countermeasures,” In Proc. of the Intern.

Symposium on Secure Software Engineering (ISSSE2006), Mar.
2006.

[4] E. M. Fayó, “Advanced SQL Injection in Oracle databases,” Argeniss

Information Security, Black Hat Briefings, Black Hat USA, Feb.
2005. [Online]. Available:

http://www.orkspace.net/secdocs/Web/SQL%20Injection/Advanced

%20SQL%20Injection%20In%20Oracle%20Databases.pdf.
[Accessed: Mar. 18, 2010].

[5] “Oracle® Database PL/SQL Language Reference 11g Release 1

(11.1),” Oracle Corp., 2009. [Online]. Available:
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b2837

0/toc.htm.[Accessed: Feb. 19, 2010].

[6] “SQL Injection Tutorial,” Oracle Corp., 2009. [Online]. Available:
http://stcurriculum.oracle.com/tutorial/SQLInjection/index.htm.

[Accessed: Mar. 11, 2010].

[7] C. Anley, “Advanced SQL Injection in SQL Server Applications,”
NGS Software Ltd., United Kingdom, 2002. [Online]. Available:

http://www.ngssoftware.com papers/advanced_sql_injection.pdf.

[Accessed: Feb. 09, 2010].
[8] D. Litchfield, “Lateral SQL Injection: A New Class of Vulnerability

in Oracle,” NGS Software Ltd., United Kingdom, Feb. 2008.

[Online]. Available: www.databasesecurity.com/dbsec/lateral-
sqlinjection.pdf. [Accessed: Mar. 15, 2010].

